business - The University of Tulsa

business

GM gives ultimatum to Cadillac dealers who don’t want to sell electric cars

Cadillac dealers who are uninterested or unable to commit to GM’s shift towards electric cars must decide by November 30, 2020 whether they will remain in business or “just get out” of the business. This ultimatum serves as a strategic move for GM and demonstrates their commitment to responding to consumer behavior changes.

https://electrek.co/2020/11/24/gm-gives-ultimatum-cadillac-dealers-who-dont-want-sell-electric-cars/

This blog is a project of the NOVA Fellowship at TU.

Trend Hunter’s 2021 Trend Report

Trend Hunter’s list of the top 100 trends that will impact “tech, lifestyle, dining, and more”. The four most insightful trends include:

  1. Increased use of hemp or cannabis in skincare products
  2. In-game concerts
  3. Fast-food reusables
  4. Appointment retail

https://www.trendhunter.com/trendreports?gclid=CjwKCAiA8Jf-BRB-EiwAWDtEGi4rS6y-Se0chRIf3qF8s02cKTyVMlvmxoFlR-3gy_-UBA1ADSbdCRoC21wQAvD_BwE

This blog is a project of the NOVA Fellowship at TU.

These 6 Powerful Signals Reveal the Future Direction of Financial Markets

VisualCapitalist.com’s Jeff Desjardins lists 6 signals that identify the movement of financial markets:

  1. Decline in interest rates
  2. Rising global debt
  3. Increased company turnover on the S&P 500
  4. Rising importance of environment, social, and governance factors to investors
  5. Increased stock market concentration
  6. Monetary policy changes

https://www.visualcapitalist.com/6-powerful-signals-reveal-the-future-direction-of-financial-markets/

This blog is a project of the NOVA Fellowship at TU.

 

 

 

5 Big Picture Trends Being Accelerated by the Pandemic

Nick Routley of VisualCapitalist.com identified 5 trends accelerated by the COVID-19 pandemic:

  1. Increased screen time
  2. E-commerce market penetration
  3. Changes in globalization
  4. Wealth disparity
  5. Acceptance of remote-work

https://www.visualcapitalist.com/5-big-picture-trends-being-accelerated-by-the-pandemic/

This blog is a project of the NOVA Fellowship at TU.

Researchers develop versatile robotic fabric

“Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.”

https://techxplore.com/news/2020-09-versatile-robotic-fabric.html

(Photo credit: Yale University)

This blog is a project of the NOVA Fellowship at TU. 

Life expectancy changes for women and men globally, animation 1950-2015

In just 65 years, modern medicine has propelled countries around the world to see a rapid surge in life expectancy, an indicator of improved global health. View more dynamic visuals at:

Animation: The World’s Rapid Rise in Life Expectancy, in Just 13 Seconds

[OC] life expectancy over last 65 years from dataisbeautiful

This blog is a project of the NOVA Fellowship at TU.

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Visualized: Where 5G will change the world

This visualization demonstrates the predicted impact that the fifth generation of mobile networks will have on the global economy.

https://www.visualcapitalist.com/visualized-where-5g-will-change-the-world/

This blog is a project of the NOVA Fellowship at TU.   

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

 

The Future of Supply Chain Automation

COVID-19 has increased the demand for supply chain automation. This infographic examines the investment and adoption of automation in the fields of retail, manufacturing, and logistics.

https://www.visualcapitalist.com/supply-chains-automation-future/

This blog is a project of the NOVA Fellowship at TU 

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

No Outside Developer Had Worked In OKC’s East Side For 35 Years. Then, An Unlikely Team Stepped Up.

Oklahoma City is finding new ways to actively build and support its East Side community.

https://timesofe.com/miracle-in-oklahoma-city/

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

AI ethics backed by Pope and tech giants in new plan

Vatican released “Rome Call for AI Ethics” which is endorsed by Microsoft and IBM.

https://www.bbc.com/news/technology-51673296

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Cash, Plastic or Hand? Amazon Envisions Paying With a Wave

Amazon pilots checkout technology which would allow you to pay with your hand.

https://www.wsj.com/articles/cash-plastic-or-hand-amazon-envisions-paying-with-a-wave-11579352401

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Hong Kong Airport Rolls Out Cleaning Robots And Full-Body Disinfection Booths

Hong Kong’s International Airport’s new cleaning robots and full-body disinfectant booths may be the way of the future for airline travel.

https://www.activistpost.com/2020/05/hong-kong-airport-rolls-out-cleaning-robots-and-full-body-disinfection-booths.html

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Telefonica and MediaPro debut 5G Augmented Tourism with AR bus windows

New AR windows on Barcelona bus inform tourists of key attractions as they pass. Telefonica and MediaPro debut 5G technology with AR bus windows.

https://venturebeat.com/2020/03/06/telefonica-and-mediapro-debut-5g-augmented-tourism-with-ar-bus-windows/

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Ranked: The Most Innovative Economies in the World

World’s most innovative economies for 2020, according to Bloomberg’s “Innovation Index”.

https://www.visualcapitalist.com/world-most-innovative-economies/

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Volvo, Daimler to found truck fuel cell joint venture

Volvo and the truck division of Daimler announce a joint venture to make hydrogen fuel cell systems for heavy-duty vehicles. 

https://apnews.com/b13cc8d640582cffef1abc0e60f1f3fc

This blog is a project of the NOVA Fellowship at TU. 

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Entrepreneurs in Crisis: COVID-19 and Beyond

The Ewing Marion Kauffman Foundation and Start Us Up found in recent polling data that the majority of entrepreneurs are disillusioned with policy makers.

The survey examines the opinions of current entrepreneurs, wantrapreneurs, and general election voters. 

https://www.startusupnow.org/entrepreneurship-data

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Inside ‘Amazon Go Grocery’: Tech giant opens first full-sized store without cashiers or checkout lines

Amazon opened cashierless grocery store in Seattle and intends to license this cashierless system to other businesses. https://www.geekwire.com/2020/amazon-goes-bigger-first-amazon-go-grocery-new-seattle-store-using-cashierless-technology/

This blog is a project of the NOVA Fellowship at TU. 

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Black Swan Events: Short-term crisis, Long-term opportunity

Black Swan events can dramatically affect the stock market; the visualization graphically illustrates historical Black Swan events and their downturn and recovery time in finance markets. This information may help with understanding what the rest of 2020 could look like.

https://www.visualcapitalist.com/black-swan-events-short-term-crisis-long-term-opportunity/

This blog is a project of  the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.

 

Grad Student Uses AI to Write Papers

A Business graduate student used AI to write passable essays based on business cases.

https://futurism.com/grad-student-neural-network-write-papers

This blog is a project of the NOVA Fellowship at TU.  

 

The NOVA Fellowship at The University of Tulsa (TU) has a mission to build and support the culture of innovation on campus and in our communities. We do this by providing small grants to help innovative student projects, faculty involved in innovative programs, and curating content related to current trends and recent developments in technology and innovation. This content includes topics relevant to the entire campus, including health sciences, economics, arts management, biology, computer science, finance, artificial intelligence (AI), communication, engineering, and global issues. Because NOVA students are studying in a variety of TU majors, our interdisciplinary approach to problem-solving is one of our great strengths.

NOVA also helps provide training to students and faculty in creativity, problem-solving, innovation, and entrepreneurship. We offer training on the TU campus in meetings and workshops, and through an exciting partnership with Stanford University in Palo Alto, California. Every year since 2015, NOVA has sent several TU students and faculty to Stanford for 4-5 days of training with experts and interaction with fellow scholars from around the world. The student program is University Innovation Fellows (www.universityinnovationfellows.org) and the program for faculty is the Teaching and Learning Studio Faculty Workshop (http://universityinnovationfellows.org/teachingandlearningstudio/).

In these ways, NOVA exposes TU faculty, staff, and students to many processes and tools used in modern companies related to creativity, problem-solving, innovation, and entrepreneurship. One of these is “design thinking.” It is one of the most well-known problem-solving approaches used around the world today, used to develop concepts for new products, education, buildings, machines, toys, healthcare services, social enterprises, and more. According to the people who developed this tool, Dave Kelley and Tim Brown of the design firm, IDEO:

“Design thinking is a human-centered approach to innovation that draws from the designer’s toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success…. Thinking like a designer can transform the way organizations develop products, services, processes, and strategy. This approach, which IDEO calls design thinking, brings together what is desirable from a human point of view with what is technologically feasible and economically viable. It also allows people who aren’t trained as designers to use creative tools to address a vast range of challenges.” (https://www.ideou.com/pages/design-thinking)

As the innovation field develops, new perspectives are emerging. One promising approach we are beginning to bring into NOVA meetings and workshops is called “systems thinking,” which builds upon the emergent field of complexity research. Systems thinking recognizes the inherent interactivity of the dynamic processes in our world and focuses on problem-solving with that complexity in mind. This approach isn’t completely new, but recent work has made systems thinking more accessible to people interested in solving problems of most any type. For example, Derek Cabrera, Ph.D. (Cornell University) has proposed a useful taxonomy designed to improve systems thinking called DSRP (Distinctions, Systems, Relationships, and Perspectives). He defines it as: “The recursive distinguishing of things and their interrelationships and part-whole organization from various perspectives” (https://blog.cabreraresearch.org/what-is-a-system-what-is-systems-thinking). Elsewhere, DSRP has been described as a particular way to think about problems, and that the use of these four patterns notably improves people’s problem-solving abilities – demonstrated in sessions with Kindergartners all the way to CEOs. The complex, adaptive mental models that are formed during systems thinking attempt to identify the most approachable and simplest explanations for phenomena. In his book with Laura Cabrera, Systems Thinking Made Simple, examples of the simplicity that drives complexity include: the interaction of CMYK colors in our world, the amazing biodiversity derived from combinations of DNA’s core nucleotides ATCG, the fundamentals of martial arts which practitioners use together to improvise during sparring matches, the almost infinite variety of models that can be built with modular Lego blocks, and the billions of possible moves in a chess match with just 6 unique pieces.

We invite you to join us and collaborate as we learn more about effective ways to solve problems that you and others care about in the community, in corporations, and on campus! Please visit www.novafellowship.org or email Dr. Charles M. Wood, Professor of Marketing at TU: charles-wood@utulsa.edu.